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SOLUTION TO EXAMINATION 1

Directions. Do both problems (weights are indicated). This is a closed-book closed-note exam
except for one 81

2 ×11 inch sheet containing any information you wish on both sides. You are free to
approach the proctor to ask questions – but he or she will not give hints and will be obliged to write
your question and its answer on the board. Don’t use a calculator, which you don’t need – roots,
circular functions, etc., may be left unevaluated if you do not know them. Use a bluebook. Do not
use scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Box or circle your answer.

1. (58 points)
In a free-electron laser, a beam of relativistic
electrons is subjected to a transverse magnetic
field that varies sinusoidally with lab coordinate
z, the (average) beam direction:

B = x̂B0 cos
2πz
λ0

where B0 and λ0 are constants. In the lab, the
z component of the electrons’ velocity is

vz = β0c

where β0 is a constant.

a. (8 points) Consider a Lorentz frame S ′ mov-
ing with velocity

β0c = ẑβ0c

with respect to the lab. The Lorentz trans-
formation for electromagnetic fields is

E′
‖ = E‖

B′
‖ = B‖

E′
⊥ = γ0(E⊥ + β0 × cB⊥)

cB′
⊥ = γ0(cB⊥ − β0 ×E⊥) ,

where γ0 ≡ (1−β2
0)

−1/2. Calculate the elec-
tric field E′ seen in S ′; continue to express
it in terms of 2πz/λ0.

Solution. There are no electric or parallel mag-
netic fields in the lab frame so the third equation

gives us the total electric field seen in S ′:

E′ = β0 × cB⊥

= γ0β0cB0 cos
(2πz

λ0

)
(ẑ × x̂)

= γ0β0cB0 cos
(2πz

λ0

)
ŷ .

b. (8 points) Defining

2πz/λ0 ≡ ω′
0t

′ ,

where t′ is the time as observed at the origin
of S ′, compute ω′

0 in terms of the constants
previously given.

Solution. We need a Lorentz transformation
to relate (ct, z) to (ct′, z′). Taking advantage
of the fact that z′ = 0, we minimize algebra by
choosing the inverse transformation:

z = γ0z
′ + γ0β0ct

′

= 0 + γ0β0ct
′

= γ0β0ct
′

2π
λ0

z =
2π
λ0

γ0β0ct
′

≡ ω′
0t

′

ω′
0 =

2πγ0β0c

λ0
.

c. (8 points) Consider an electron of charge −e
and mass m whose average position is

〈x′, y′, z′〉 = (0, 0, 0)
as observed in S ′. In this frame, its veloc-
ity is so small that you may ignore v′ ×B′



with respect to E′. In frame S ′, making this
approximation, compute the electron’s mo-
tion y′(t′). (In case you didn’t get part b.
exactly right, leave your answer in terms of
ω′

0.)

Solution. The Lorentz force on the electron in
S ′ is given by:

F′ = −eE′ − ev′ ×B′ ,

but we can ignore the v′ ×B′ term since v′ is
always small. So then we have an equation for
the acceleration:

mea′ = −eE′.

Plugging in E′ from (a.) and integrating twice
with respect to t′,

y′(t′) =
e

m
γ0β0cB0

cosω′
0t

′

(ω′
0)2

.

d. (8 points) The electric dipole moment p
of a distribution of N point charges qi at
positions ri is defined as

p =
N∑

i=1

riqi .

The power P (t) radiated by a charge dis-
tribution with time-varying dipole moment
p(t) is

P =
1

4πε0
2
3
(d2p/dt2)2

c3
.

As seen in S ′, calculate 〈P ′〉, the time-
averaged power radiated by a single electron
in the free-electron laser.

Solution. The second derivative of the time-
varying electric dipole moment for a single elec-
tron in the free electron laser is given by:

d2p′

dt2
= −ea′ ,

where a′ is the acceleration found in (c.):

a′ = − e

m
γ0β0cB0 cosω′

0t
′.

Plugging this result into the formula given above
for radiated power P ′,

P ′ =
1

4πε0
2
3
e4γ2

0β
2
0c

2B2
0

m2c3
cos2 ω′

0t
′ .

Since 〈cos2 ω′
0t

′〉 = 1/2, the time average of P ′ is
given by:

〈P ′〉 = 1
4πε0

1
3
e4γ2

0β
2
0B

2
0

m2c
.

e. (8 points) Energy and time both transform
as the 0th component of a four-vector. Cal-
culate 〈P 〉, the time-averaged power radi-
ated by a single electron as observed in the
lab. You may leave your answer in terms of
〈P ′〉.

Solution. Since both energy and time trans-
form as the 0th component of a four-vector, if
we have measured a change in energy of the
electron ∆E′ and a change in time ∆t′ in the
electron’s rest frame S ′, then the same quanti-
ties in the lab frame are given by ∆E = γ0∆E′

and ∆t = γ0∆t′. So

〈P ′〉 = ∆E′/∆t′

= ∆E/∆t

= 〈P 〉 .

This was also solved in problem set 3, problem 3!

f. (10 points) For light, the relativistic Doppler
shift is

ω =
ω′

γ0(1− β0 cos θ)
.

Calculate the ratio λ0/λ, where λ0, as be-
fore, is the characteristic length describing
the spatial variation in the lab of the free-
electron laser’s magnetic field, and λ is the
wavelength of the light that its electrons ra-
diate in the forward direction, as observed
in the lab. Express this ratio in terms of γ0,
in the limit β0 → 1.

Solution. In S ′, we know from (c.) that the
electron is oscillating with angular frequency ω′

0.



Then, in S ′, the EM radiation produced by that
electron has the same angular frequency. A
forward observer in S, upon whom the beam
impinges with θ = 0, sees this radiation with a
Doppler shifted angular frequency ω0 that, by
the above Doppler formula, is equal to

ω0 =
ω′

0

γ0(1− β0)
.

Substituting ω0 = 2πc/λ, and plugging in the
value of ω′

0 from (b.),

2πc
λ

=
2πγ0β0c

λ0

1
γ0(1− β0)

λ0

λ
=

β0

1− β0

=
1 + β0

1 + β0

β0

1− β0

= γ2
0β0(1 + β0) .

This reduces to 2γ2
0 in the relativistic limit, a fa-

mous (and simple) result. If, say, λ0 is 0.1 m and
the electron energy is 500 MeV (γ2 ≈ 106), the
FEL or wiggler can be made to radiate in the far
UV (λ ≈ 0.05 µm), where no conventional laser
is available.

g. (8 points) What is the state of polarization
of the free-electron laser’s light? Explain.

Solution. From (c.) we know that the elec-
tron oscillates in the ŷ direction. The on-axis
radiation from the dipole is propagating in the
ẑ direction, so light is polarized orthogonal to
ẑ. From the formula derived in class describing
dipole radiation, we know the radiation is polar-
ized in the θ̂ direction where the vertical axis is
defined by the direction the dipole oscillates in.
Hence we can conclude that the light is linearly
polarized in the ŷ direction.

2. (42 points)
Semi-infinite regions y > L and y < −L are filled
by perfect conductor, while the intervening slab
−L < y < L is filled by dielectric with constant
dielectric constant ε and permeability µ.

a. (8 points) In SI units, write Maxwell’s equa-
tions for E and H inside the dielectric. Do

not write any terms involving free charges
or free currents, which both vanish there.

Solution. Within the dielectric, D = εE and
B = µH, where ε and µ are constants. The
source-free equations are

∇ ·B = 0
B = µH

⇒ ∇ ·H = 0

and

∇×E = −∂B
∂t

B = µH

⇒ ∇×E = −µ
∂H
∂t

The useful source-dependent equations are the
variety that depend on free rather than total
charges and currents, because free charges and
currents are zero in the dielectric. These are

∇ ·D = ρfree = 0
D = εE

⇒ ∇ ·E = 0

and

∇×H = Jfree +
∂D
∂t

=
∂D
∂t

D = εE

⇒ ∇×H = ε
∂E
∂t

b. (8 points) Prove that Ex and Ez both must
vanish at y = ±L.

Solution. Electric fields vanish in perfect
conductors, because the infinitely mobile free
charges instantaneously rearrange themselves to
shield out any externally applied electric field.
Consider a rectangular loop with long side S and
short side s. One long side lies in the conduc-
tor, parallel to the plane y = L; the other long
side lies in the dielectric. In the limit s → 0, the
right-hand side of Faraday’s law,

∮
E · dl = − d

dt

∮
B · da ,



vanishes because the area vanishes, and the con-
tributions of the short parts to the rectangular
loop on the left-hand side also vanish. The only
nonvanishing contribution to the left-hand side
is E‖ · S in the dielectric. This proves that E‖
in the dielectric must vanish at |y| = L. This in-
cludes E‖ in either the x̂ or ẑ directions, which
both are parallel to the interface.

For parts c. and d. only, assume, for
−L < y < L, that the fields are given by

Ephysical = �(
ŷE2 exp

(
i(kz − ωt)

))
Hphysical = �(

(x̂H1 + ẑH3) exp
(
i(kz − ωt)

))
,

where E2, H1, andH3 are unknown complex con-
stants, and k and ω are unknown real constants.

c. (8 points) Prove that H3 = 0.

Solution. As usual we require the complex
electromagnetic fields to satisfy Maxwell’s equa-
tions (not just their (physical) real part). When
their dependence on r and t is of the form
exp

(
i(k · r− ωt)

)
, the operators ∇· and ∇× re-

duce to ik· and ik×, respectively, while the
operator ∂/∂t reduces to −iω. Using the first
Maxwell equation in (a.),

∇ ·H = 0
ik · (x̂H1 + ẑH3) = 0

k = ẑk

⇒ ikH3 = 0 .

d. (10 points) Calculate the ratio H1/E2 in
terms of known quantities.

Solution. Using the methods of (c.), the second
Maxwell equation in (a.) requires

ik(ẑ × ŷ)E2 = +iωµx̂H1

−ikx̂E2 = +iωµx̂H1

− k

µω
=

H1

E2

while the fourth Maxwell equation in (a.) re-
quires

ik(ẑ × x̂)H1 = −iωεŷE2

ikŷH1 = −iωεŷE2

H1

E2
= −εω

k
.

Setting the two values of H1/E2 equal,

− k

µω
= −εω

k

k

ω
=

√
εµ .

Plugging this value for k/ω into either of the
equations for H1/E2,

H1

E2
= −

√
ε

µ
.

e. (8 points) Can a linear combination of a
right-hand and a left-hand circularly polar-
ized plane wave in the region −L < y < L
propagate in the z direction? If not, why
not? If so, what combination(s) would be
possible? Explain fully.

Solution. From (b.) we know that Ex = 0
at |y| = L. In this part (only!) we are asked
to assume that a plane wave is propagating in
the ẑ direction within the dielectric. This means
that E must be ⊥ to ẑ and it cannot depend on
x and y. So, if Ex vanishes at the boundaries
|y| = L, it must vanish throughout the dielec-
tric. Thus the only nonzero component of E
lies in the ŷ direction. We then ask, what com-
bination of RH polarization (∝ x̂ − iŷ) and LH
polarization (∝ x̂ + iŷ) add to pure ŷ polariza-
tion? Evidently, the RH and LH waves must
have equal amplitude and opposite sign.


